方程为 $\begin{cases} x=\cos\theta, \\ y=\sin\theta \end{cases}$ $(\theta$ 为参数),过点 $(0,-\sqrt{2}$) 且倾斜角为 α 的直线 l 与 $\odot O$ 交干A. B 两点.

- (1) 求 α 的取值范围:
- (2) 求 AB 中点 P 的轨迹的参数方程.

解析: (1) $\odot 0$ 的直角坐标方程为 $x^2+y^2=1$.

当 $\alpha = \frac{\pi}{2}$ 时, l = 0交于两点.

当 $\alpha \neq \frac{\pi}{2}$ 时,记 $\tan \alpha = k$,则 l的方程为 $y=kx-\sqrt{2}$. l与

 $\odot 0$ 交于两点当且仅当 $|\frac{\sqrt{2}}{\sqrt{1+k^2}}|<1$,解得 k<-1 或 k>1,即

 $\alpha \in (\frac{\pi}{4}, \frac{\pi}{2})$ \mathbb{R} $\alpha \in (\frac{\pi}{2}, \frac{3\pi}{4})$.

综上, α 的取值范围是 $(\frac{\pi}{4}, \frac{3\pi}{4})$.

(2)
$$l$$
 的参数方程为 $\begin{cases} x=t\cos\alpha, \\ y=-\sqrt{2}+t\sin\alpha \end{cases}$ $(t$ 为参数, $\frac{\pi}{4}<\alpha<\frac{3\pi}{4}$).

设A, B, P对应的参数分别为 t_A , t_B , t_P , 则 $t_P = \frac{t_A + t_B}{2}$, 且 t_A , t_B 满足 $t^2-2\sqrt{2}t\sin\alpha+1=0$.

于是 $t_A+t_B=2\sqrt{2}\sin\alpha$, $t_P=\sqrt{2}\sin\alpha$. 又点 P 的坐标 (x,y)

为参数, $\frac{\pi}{4} < \alpha < \frac{3\pi}{4}$).

【点评】本题第 (1) 小题考查直线与圆的位置关系, 涉 及参数方程与直角坐标方程的转化, 考查直线斜率、倾斜角 取值范围,考查了三角函数知识;第(2)小题考查直线参数 方程的几何意义及轨迹方程,综合考查三角函数知识.

二、坐标系与参数方程选做题十年试题特点

1. 主要考查不同形式的方程之间的互化

对坐标系与参数方程的考查,十年中有八年考查了不同 形式方程之间的互化, 大部分是单向转化, 而且是向直角坐 标方程进行转化,但 2013、2016年新课程全国 I 卷该选做题 第 (1) 小题是由参数方程转化为极坐标方程, 2014年新课程 全国Ⅱ卷该选做题第(1)小题是把极坐标方程化为参数方 程,且需要经过两次转化,有时仅仅是为了考查互化这个知识 点,例如,2009年该选做题中的第(2)小题就没有用到第(1) 小题互化后的结果;但其余年份的考题中,第(1)小题的 互化是为第(2)小题的应用做准备的,所以互化是坐标系与 参数方程考查的重点知识. 2017 年新课程全国 I 卷该选做题的

第(1)小颢间接考查参数方程转化为直角坐标方程,2018年 新课程全国 I 卷该选做题的第 (1) 小题考查极坐标方程转化 为直角坐标方程,全国 Ⅱ 卷该选做题的第(1)小题考查参数 方程与直角坐标方程的转化,全国 Ⅲ 卷该冼做题的第(1) 小题间接考查参数方程与直角坐标方程的转化.

2. 重点考查数形结合、转化与化归的思想方法

解析几何将数形紧密结合. 在以前的解析几何考题中, 解 析几何一直以运算著称,新课标则注重考查学生的思维能力, 而几何知识正好与其吻合,各年试题都体现了数形结合的思 想方法,不同形式方程之间的互化实质考查了转化与化归思想,

3. 通过考查曲线的几何性质, 突出坐标系与方程思想

大部分坐标系与参数方程试题都会考查位置关系、交点 坐标和弦长等几何量,选择不同的方程或坐标系会得到不同 的解法.例如,2011年该选做题第(2)小题,利用极坐标系求 解比转化成直角坐标进行求解更容易,而 2007 年该冼做题第 (2) 小题无论用普通方程或用极坐标方程求解都相差不大. 2008 年该选做题第 (1) 小题,显然用直角坐标方程比极坐标 方程要容易得多, 所以正确选择坐标系或方程, 可使解题更 加方便快捷.

4. 通过考查轨迹问题, 突出参数的桥梁作用

在解析几何中,参数法是求曲线方程的一种方法,2010 年该冼做题是先给定一个动点与一个定点, 再由中点公式把 所求动点坐标用参数建立了联系,得到参数方程.2011年该 选做题则用向量关系把所求动点与已知动点建立关系,从而 建立所求的参数方程.2013 年新课程全国 I 卷该选做题是先给 定两个含有参数的动点,再由中点公式得到所求动点的参数 方程.它们的本质都是把动点坐标通过参数建立关系,得到参 数方程,消参后化为一般方程,2017年新课程全国Ⅱ券该选 做题第 (1) 小题直接法求轨迹方程 (极坐标), 再转化为直角 坐标方程. 2018 年新课程全国Ⅲ卷该选做题第(2)小题通过 直线参数方程几何意义考查轨迹方程.

5. 考查最值问题, 凸显参数方程的优点

2009年, 2012年和 2014年新课程全国 I 卷该选做题都 是运用椭圆的参数方程求最值问题,其中2009年该选做题是 直接求点到直线距离的最大值,属于基本题型,2012年该选 做题是求椭圆上点到4个定点的距离,从而转化为余弦函数 的值域问题,看上去题目很复杂,但只要抓住本质,大胆运 算,其实是很简单的,2014年该选做题把求最值问题隐含在 一个直角三角形中,需要学生自己去发现和转化,之后就会 变为点到直线距离的最值问题,它们的共同特点是通过椭圆参 数方程,把问题转化为三角函数的最值来处理.2017年新课 程全国 I 卷该选做题第 (2) 小题已知点到直线距离的最大值, 求未知数 a, 也是属于运用椭圆的参数方程求最值问题, 用到 三角函数辅助角公式.

6. 以变换的观点求曲线方程

利用坐标伸缩变换求曲线方程,实际上是求曲线方程的 一种方法, 叫做代入法, 只有 2008 年该选做题中考查了这部